CHAPTER 1 INTRODUCTION

The carton in which the BDE－2007 is delivered contains： 1．Indicator．2．Accessory pack（In bag）．3．Manual．

2

CHAPTER 2 INSTALLATION

§ 2－1 Best Conditions For Use

When installing and wire connecting on BDE－2007，please follow the guidelines below：
© Before connecting the Electric Power Supply，please identify the input Electric voltage type is DC 12 V or DC 24 V ．
（）The Operation Temperature shall range within $0^{\circ} \mathrm{C} \sim 45^{\circ} \mathrm{C}$ ，please DO not install in any place of direct sun－light．Due to the minute output signal from Load Cell， please use isolated cables．Also，separate the Load Cell cable from the power supply cable and control I／O cables．
© The input power shall be DC 12 V or $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%$ ，if the Electric Power Supply is not stable or the interference signal exists，that may cause uncertain actuation or reaction，even damage． Therefore，please utilize Electric Power Supply Stabilizer of adequate capacity．

§ 2－2 Connecting the Load Cell

－Do not turn on your power until you have completely connected the load cell．

Screw	Signal
$\mathbf{1}$	Positive Excitation Voltage，（EXC＋）
$\mathbf{2}$	Positive Sense Voltage，（SEN＋）
$\mathbf{3}$	Negative Sense Voltage，（SEN－）
$\mathbf{4}$	Negative Excitation Voltage，（EXC－）
$\mathbf{5}$	Positive Signal Voltage，（SIG＋）
$\mathbf{6}$	Negative Signal Voltage，（SIG－）
$\mathbf{7}$	Shield，（SHD）

> Open the case，there is a jumper〔S1〕near the transformer，please insert a short－circuit pin to the available side．

（i）To connect your load cell to the weighing Indicator use a six－wire cable with shield－connect the wires as indicated above．If the BDE－2007／BDE－2007 is located near the Load Cells（Within five meters or a few yards）you may use a 4 －wire cable with shield，but first connect screws $1 \& 2$ and 3\＆4 with independent jumper leads．
（i）The analogue output from the Load Cell and input／output signals are sensitive to electrical noise．Do not bind these cables together as it could result in cross－talk interface．Please also keep them away from AC power cables．

§ 2-3 Front and Rear Panel Dimensions

Front Panel of BDE-2007

Rear Panel of BDE-2007

93.5 mm

CHAPTER 3 SPECIFICATIONS

§ 3-1 Analog Input and A/D Conversion

OAnalog Input and A/D Conversion	
Type	BDE-2007
Input Sensitivity	0.12μ V/D or above
ZERO Adjustment Range	$0 \sim 20 \mathrm{mV}$
Load Cell Excitation	DC5V $\pm 5 \%$, 120mA, Remote Sensing. Can be connected up to 8350Ω Load Cells.
Non-Linearity	0.01% F.S.
A/D Conversion Method	$\triangle \Sigma$
A/D Resolution	$\fallingdotseq 1 / 1,000,000$
A/D Conversion Rate	120 Times $/$ Sec.
Max. Load Cell Input	20 mV
Voltage	

§ 3-2 General

General	
Type	BDE-2007
Power Requirements	DC 12 V or $24 \mathrm{~V} \pm 10 \%, 400 \mathrm{~A}$
Net weight	$\fallingdotseq 0.4 \mathrm{~kg}$
Operation Temperature	$-10^{\circ} \mathrm{C} \sim 45^{\circ} \mathrm{C}$
Maximum	85% (non-condensing]
Physical Dimensions	$160(\mathrm{D}) \times 99(\mathrm{~W}) \times 49(\mathrm{H}) \mathrm{mm}$

s3-3 Display and signs

*3-3-1 Front Panel of BDE-2007

No.	Display	Spec.
(1)	8.8.8.8.8.8	6 digit (Positive)
(2)	K g , t, lb	Weight indication
(3)	ZER0, M. D. , NET, TARED	Status indication ZERO M. D. (Unstable) NET TARED
(4)		Key
(5)	-	DC Voltage low

* 3-3-2 Operation Modes

Press Mode key for more than 2 seconds and release, the LED light will change as follows : MODE0 (No light) \rightarrow MODE1 (Red light) \rightarrow MODE2 (Green Light) \rightarrow MODE3 (Orange light)

1.MODE0: Normal Weight display mode.
2.MODE1 (Red): Batch operation mode
3.MODE2 (Green): Set point and Accumulation Mode.
4.MODE3 (Orange): Not in Use.
**Press ZERO keys more than 2 seconds will escape.
** See 5-1 to learn setup of set point values.

Mode	$\begin{gathered} \text { Press MODE } \\ \text { To } \end{gathered}$	$\begin{aligned} & \text { Press } \\ & \text { ZERO } \\ & \text { To } \end{aligned}$	$\begin{gathered} \text { Press TARE } \\ \text { To } \end{gathered}$	$\begin{gathered} \text { Press GIN } \\ \text { To } \end{gathered}$
Mode 0	Manual Accumulation $=$ Press mode key 1 second.	ZER0	Tare $=$ Press mode key 1 second. Tare Clear=Press mode key >2 second.	Gross / Net Change
Mode 1 (RED)	Manual Accumulation = Press mode key 1 second.	ZERO	Tare $=$ Press mode key 1 second. Tare Clear=Press mode key >2 second.	Batching Start/ Stop
Mode 2 (Green)	ENTER $=$ Press mode key 1 second.	Set Point	Display Accumulation	Up and down
Mode 3 (Orange)	Not in Use			

* 3-3-3 Rear Panel

No.	Spec.
(1)	DC power input
(2)	Serial
(3)	Load cell input 7 pins
(4)	SET cover
(5)	Option cover
(6)	Grounding

CHAPTER 4 SYSTEM UNCTIONS

§ 4-1 System Check

A system check should be run: after initial installation, after moving your BDE-2007, after connecting or disconnecting an attachment from the Rear Panel and as means of locating any unexplained system error.
STEP 1: Power OFF, make sure all SET $\left.{ }^{2}{ }^{1}\right]_{\text {off }}$.
STEP 2: Power ON, Press MODE
With ZERO key more than 2 seconds, displayed F-CSET \rightarrow FUNC.
STEP 3:Press TARE key, shows CHECK.
STEP 4:Press MODE Key, the system will check 7 Segment Leeds in sequence., When show EE-1, Slide Set 1 [100 , then press MODE key, System will Check MEMORY 〔EEPROM〕 shows I-0, it means system error.
STEP 7:System check will go to Input/Output checking. When the screen show I-O, Subsequently, the screen will show OUTPUT. Please make SHORT-CIRCUIT test on 25-Pin D shape Output on the rear panel. When short-circuiting COM17 or COM16 with other pins, the short-circuit pin will light up a specific LED on the screen. If not, there suggests an error occurred.
STEP 8:Check keypad. ($1,2,3,4$). When pressing a key, the key number will show in the middle of the screen: KEY 01~KEY 4. If the key number does not match, it suggests an error occurred. Please contact us.
STEP 9: Finish checking, Slide SET BDE-2007 will back to normal mode.

§ 4-2 Functions

STEP 1: Press MODE With ZERO key more than 2 seconds, displayed F-CSET \rightarrow FUNC.
STEP 2: Press MODE key to show F000 afterward.
STEP 4:Please press TARE or G/N key to go up and down (F000, F200, F300, F400 or F500). Then press the MODE Key to enter the category. Press MODE key to enter.
(i) If any errors occurred, please check if each setting value within effective range.

STEP 5: When you finished changing the Function setting, Press ZERO key more then 2 seconds to escape,
©General Functions

F000	Decimal Point Adjustment		
	0	No Decimal	123456
	1	1 Decimal	12345.6
	2	2 Decimal	1234.56
0	3	3 Decimal	123.456

F001	Weighing Unit Selection	
	0	None
	1	kg
	2	ton
	3	Lb

F002	Display Update Rate	
	0	5 Times $/ \mathrm{Sec}$
	1	10 Times $/ \mathrm{Sec}$
	2	20 Times $/ \mathrm{Sec}$
	3	40 Times $/ \mathrm{Sec}$

F004	Set ZERO Range	
	5	$\pm 5 \%$ of weighing platform Full Capacity
	10	$\pm 10 \%$ of weighing platform Full Capacity
	20	$\pm 20 \%$ of weighing platform Full Capacity
30	Full of weighing platform full Capacity	

F003	Digital Filter				
			Filter	Environment Vibration	Response Speed
	0	No stage	Weak	Bad	Fast
	1	$1^{\text {st }}$ stage			
	2	$2^{\text {ed }}$ stage			
	3	$3^{\text {td }}$ stage	\mathbf{A}	$\mathbf{\Delta}$	$\mathbf{\Delta}$
-	4	$4^{\text {th }}$ stage	$\boldsymbol{\nabla}$	$\boldsymbol{\nabla}$	$\boldsymbol{\nabla}$
	5	$5^{\text {th }}$ stage			
	6	$6^{\text {th }}$ stage			
	7	$7^{\text {th }}$ stage	Strong	Good	Slow

F005	Motion Detection	
	00	Stable
	01	0.5 SEC 1 DIV
	02	0.5 SEC 2 DIV
	03	0.5 SEC 3 DIV
	04	0.5 SEC 4 DIV
	05	0.5 SEC 5 DIV
	06	0.5 SEC 6 DIV
	07	0.5 SEC 7 DIV
	08	0.5 SEC 8 DIV
	11	1 SEC 1 DIV
	12	1 SEC 2 DIV
	13	1 SEC 3 DIV
	14	1 SEC 4 DIV
	15	1 SEC 5 DIV
	16	1 SEC 6 DIV
	17	1 SEC 7 DIV
	18	1 SEC 8 DIV

F006	Automatic ZERO Tracking Compensation	
	00	OFF
	11	1 SEC 0.5 DIV
	12	1 SEC 1 DIV
	13	1 SEC 1.5 DIV
	14	1 SEC 2 DIV
	15	1 SEC 2.5 DIV
	16	1 SEC 3 DIV
	17	1 SEC 3.5 DIV
	18	1 SEC 4 DIV
	21	2 SEC 0.5 DIV
	22	2 SEC 1 DIV
	23	2 SEC 1.5 DIV
	24	2 SEC 2 DIV
	25	2 SEC 2.5 DIV
	26	2 SEC 3 DIV
	27	2 SEC 3.5 DIV
	28	2SEC 4 DIV

F007 ZERO \& TARE keys Availability

- 0 ZERO \& TARE keys always work 1 ZERO \& TARE keys only work when display is STABLE

F009 Accumulation Availability

	0	OFF
	1	Stable
	2	Manual
	3	Control Input--Command Accumulation (For Modbus)
-	4	Control Input -Command Accumulation

F100 Set ZERO Band
6 digit Zero band value (Initial "000.000")

F101 Batching Mode

-	1	Customer Programmed Control Mode: Normal Batching
	2Customer Programmed Control Mode: Loss-in-Weight Batching	
	3Built-in Automatic Program Mode: Normal Batching	
	4Built-in Automatic Program Mode: Loss-in weight Batching	

F103 Timer-Finish Signal

The finish signal timer can be Set between
0.0 to 9.9 Sec
※- Initial 0.0 Sec
※ Finish Signal sent ON at 0.0 Sec .
And stays ON until the next START Signal. ※ (Only apply to batching mode 3 and 4).

F106	Input by	
$\boldsymbol{~}$	(Batch start/ stop)	
	1	Panel key
	2	BCD Input
	3	Serial Input/ Modbus

F108	Memory Automatic Free Fall Compensation	
-	0	Yes
	1	Not Memory

F102 Timer-Comparator Inhibitor
Set between 0.0 to 2.0 Sec
(Initial 0.0 Sec)
(Only apply to batching mode 3 and 4).

F104 Pulse Width of Finish Signal

Set between 0.0 Sec to 2.0 Sec
※ - Initial 0.5 Sec
※ Stable at 0.0 Sec. Which is apply to F101 setting at 3 or 4 .

F105	Output 8	
\bullet	0	Unstable
	1	Error

© SERIAL (RS-232 two way/ RS-485 Modbus)

F201	Set data length, Parity, Stop bit	
	0	D8,N,1
	1	D7,E,1
	2	D7,O,1
	3	D8,N,2
	4	D8,E,1
5		
Only 3,4,5 applicable MODBUS (RTU)		

F202	Output data	
-	1	Same as display
	2	GROSS Weight
	3	NET Weight
	4	TARE Weight
	5	GROSS Weight, NET Weight, TARE Weight

F203	Output Mode	
	1	Stream
	2	Stable and auto print
	3	Manual Print Mode
	4	Accumulate and Print
	5	For RS-232 commanding
	6	For Modbus commanding

F204 \quad Serial address (RS-485)
00-not used(OFactory set at 00)
00-99 Used

F205	RS-232 Models select	
$\boldsymbol{}$	0	BDI-2001/ AD4321
	1	BDI-9301
	2	IQ-350
	3	$\mathrm{HB}-8210$

© Analog Output

F500	Analog Output Data	
-	1	Output 4~20 mA
	2	Output 0~+10 V

F 502	Loss-in-weight Absolute Value	
0	0	Not read Absolute Value
	1	BDI-2001B reads Absolute Value

F501	Output Mode	
\boldsymbol{O}	1	Same as display
	2	GROSS Weight
	3	NET Weight

F 503	Output current when display ZERO
0.0 through 99.9	
Initial 4.0	
(If F 500=1, Normally between 4-20,	
If F 500=2, Normally between 0-10)	

F 504 Output current at Full Capacity
0.0 through 9.99

O Initial 20.0
(If F 500=1, Normally between 4-20, If F 500=2, Normally between 0-10)
(o) Serial (RS-232-one way)

FL00	Band Rate	
	1	$1200 B P S$
\bullet	2	$2400 B P S$

FL01	Output data	
$\boldsymbol{0}$	1	Same as display
	2	GROSS Weight
	3	NET Weight
	4	TARE Weight
	5	GROSS Weight, NET Weight, TARE Weight

FL02	Output Mode	
\boldsymbol{O}	1	Stream
	2	Stable and auto print
	3	Manual Print Mode
	4	Accumulate and Print

§4－3 Calibration

STEP 1：Power OFF，Power ON，Rear Panel SET 1 （B）ON．Shows CAL \rightarrow F－CAL．
〔1〕Setting Minimum Division
Press MODE key，displays di 01 Use the＋or－key to move through the available divisions．〔01，02，05〕．Press the MODE key to set the minimum division．
〔2〕Setting Decimal（FO00 can also change－－－see § 4－2）
The screen will show dp \rightarrow d000．000．
Use the＋or－key to move through the available divisions．〔01，02，05〕．Press the MODE key to set the minimum division．
〔 3 〕Setting Maximum Capacity
Screen will show CAP \rightarrow C000．000．Use the $<$ or + or－key to move through the available divisions．〔01，02，05］．Press the MODE key to set the minimum division
〔4］ZERO Adjust
The Screen will display ZERO．Please move the calibration mass and objects away on the Weighing device then press MODE key．A display of ．．．．．．．means finishing the Adjustment．
〔5〕 SPAN Calibration
The screen will show SPAN．Press MODE key and place your calibration mass on the weighing device and input weight value．Use the＜or＋or－key to set your mass weight．Press the MODE key to mark the SPAN．The screen will show END．
Slide the SET switch to the original side．

© Calibration Errors

C．Err 1 ：The resolution exceeds $1: 30,000$ ．
\Rightarrow Change the minimum division and maximum capacity within $1 / 30,000$ ．Resolution ratio $=$ Minimum division／maximum capacity
C．Err 2 ：The load cell output is too large at ZERO calibration．
\Rightarrow Add an additional resistor
（ $50 \mathrm{k} \Omega \sim 500 \mathrm{~K} \Omega$ ）between EXC＋and SIG－．
※ Refer to the Right Figure
C．Err 3 ：The load cell output is too small at ZERO calibration．
\Rightarrow Add an additional resistor
（ $50 \mathrm{k} \Omega \sim 500 \mathrm{~K} \Omega$ ）between EXC＋and SIG＋．
※ Refer to the Right Figure
C．Err 4 ：The calibration mass has been mistakenly entered as a value greater than the maximum capacity．

\Rightarrow Please reduce the weight of calibration mass，and re－enter the weight value．
C．Err 5：The calibration mass has been wrongly entered zero or it is smaller than the minimum capacity．
\Rightarrow Please increase the weight of calibration mass，and re－enter the weight value．
C．Err 6：The load cell output is too low．
\Rightarrow Replace your load cell with a more sensitive one or adjust the minimum division．
C．Err 7：The load cell signal pins are reversed，or the load cell output voltage is too low． \Rightarrow Check the load cell connections if reversed or load cell failure．
C．Err 8：The load cell output voltage at maximum capacity is too high．
\Rightarrow Check the load cell specification or load cell failure．
C．Err 9：The maximum，capacity has been wrongly entered as a value smaller than 100. \Rightarrow Check Resolution Table．
C．Err 10：The maximum，capacity has been wrongly entered as a value greater than 750,000 ． \Rightarrow Check the load cell specification or load cell failure．
C．Err 11 ：Please clear and Tare first
\Rightarrow Please make ZERO calibration first
C．Err 12 ：Input value too big or small．\Rightarrow Input again．

§ 4-4 SYSTEM INITILAIZE

STEP 1: Power OFF, slide rear SET 1
ON.
STEP 2: Screen shows CAL, Press TARE key until show init
STEP 3: Press MODE key, screen will show NO,
STEP 4: Press + key to show YES, Press MODE key to confirm \rightarrow END.
STEP 5: Finish initialize, Slide SET ${ }^{2} \|_{\text {off }}$ and back to normal mode.

§ 4-5 Accumulation

4-5-1 Display Accumulation
In MODE 2 Status,
Press TARE key, the screen will show its total count.
Press TARE again, the screen will show Accumulation.
Press ZERO key more than 2 seconds will escape.

4-5-2 Clear Accumulation

Press TARE key more than 2 seconds will show CLR A.C.
Press MODE key to clear count and accumulation.
Press ZERO key more than 2 seconds will Escape.

CHAPTER 5 SET POINTS

§ 5-1 SET POINTS

5-1-1 Change Set point code and Set point values

Press ZERO key to show Final. Press Mode key to show 000.000 , Use $+/-/<$ key to set Final Values. Press Mode key to confirm the Final Value.
Press Mode key to show SP1, Press Mode key to show 000.000 , Use $+/-/<$ key to set Sep point 1 values. Press Mode key to confirm the SP1 value.
Press Mode key to show SP2, Press Mode key to show 000.000 , Use $+/-/<$ key to set Sep point 2 values. Press Mode key to confirm the SP2 value.
Press Mode key to show FREE, Press Mode key to show 000.000 , Use $+/-/<$ key to set Free fall values. Press Mode key to confirm the Free fall value.
Press Mode key to show Hi, Press Mode key to show 000.000 , Use $+/-/<$ key to set Hi limit values. Press Mode key to confirm the Hi value.
Press Mode key to show L0, Press Mode key to show 000.000 , Use $+/-/<$ key to set Lo limit values. Press Mode key to confirm the Lo value.
Press ZERO key more than 2 Seconds to leave.

§ 5-2 BATCHING MODES

-Batching Modes

1. Customer Programmed Control Mode: Normal Batching
2. Customer Programmed Control Mode: Loss-in-Weight Batching
3. Built-in Automatic Program Mode: Normal Batching
4. Built-in Automatic Program Mode: Loss-in weight Batching
5. Multiple-Ingredient Batching
© Customer Programmed Control Mode: Normal Batching(F101 = 1)

1.The Weighing Hopper is empty, the display shows " 0 ", and all Gates are closed. If the display is not at ZERO, input a TARE signal(Pin 24) to re-ZERO the display.
2.Open the Supply Bin's: Full-Flow Gate,Medium-Flow Gate, and Dribble-Flow Gate.
3.When the display reaches "Final - SP 1", the SP 1 Output (Pin 12) signal will come ON.

Closed the Full-Flow Gate by using the SP 1Output ON signal.
4.When the display reaches "Final - SP 2", the SP 2 Output (Pin 11) signal will come ON. Closed the Medium-Flow Gate by using the SP 2 Output ON signal.
5.When the display reaches "Final - FREE", the FREE Output (Pin 10) signal will come ON.

Closed the Dribble-Flow Gate by using the FREE Output ON signal.
6.After Free Fall has stopped - check if the HI and LO (Pin 9, 8) signals are OFF. If both outputs are OFF then the batch is completed correctly.
7.An Automatic Free Fall Compensation Command (Min. 200ms pulse to Pin 21) may be given at this time. If you change the Free Fall Set Point value either from the Front Panel or the RS-232C, RS-422/485 - the learned Free Fall value will be cleared.
8.Use the FREE (Pin 10) signal to delay a time period as the control signal is processing empty the Weighing Hopper.
9.When the GROSS weight is below the ZERO band, the ZERO Band Output will come ON -signifying the Weighing Hopper is empty. Closed the Weighing Hopper Discharge Gate by using the ZERO Band (Pin 13) Output ON signal.
10. You are now ready for your next batching event.

© Customer Programmed Control Mode: Loss-in-Weight (F101 = 2)
SP1 - Supplying Bin Gate
SP2 - Full Flow Gate
Free - Dribble Flow Gat

1. The Weighing Hopper is empty as is the Receiving Bin. The display shows " 0 ", and all Gates are closed.
2. Open the Supplying Bin Gate.
3. When the GROSS Weight reaches "SP 1", the SP 1 Output (Pin 12) signal will come ON. Closed the Supplying Bin Gate by using the SP 1 Output ON signal.
4. The displayed weight will exceed the SP 1 value by the Free Fall value. This weight is not necessarily accurate - but accuracy is not needed at this moment since the purpose of this event is to fill up the Weighing Hopper. The SP 1 value is always compared to GROSS weight.
5. Input a TARE signal (Pin 24) to ZERO the display.
6. Open the Full-Flow Gate and the Dribble-Flow Gate for Full-Flow filling into the Receiving Bin.
7. When the display reaches "Final - SP 2", the SP 2 Output (Pin 11) signal will come ON. Closed the Full-Flow Gate by using the SP 2 Output ON signal.
8. When the display reaches "Final - FREE", the FREE Output (Pin 10) signal will come ON. Closed the Dribble-Flow Gate by using the FREE Output ON signal.
9. After Free Fall has stopped - check to see if the HI and LO (Pin 9, Pin 8) signals are OFF. If both outputs are OFF then the batch is completed correctly.
10. An Automatic Free Fall Compensation Command (Min. 200ms pulse to Pin 21) may be given at this time.
11. If the GROSS weight of the Weighing Hopper is below the ZERO Band (Pin 13), the ZERO Band Output will be ON. The ZERO Band Output will refill Weighing Hopper if needed.
12. Ready for next batching event.

Built-in Automatic Program Mode: Normal Batching(F101 = 3)
SP1 - Full Flow Gate
SP2 - Medium Flow Gate
Free - Dribble Flow Gate
Start signal - Pin22

1. The Weighing Hopper is empty, the display shows " 0 ", and all Gates are closed. If the display is not at ZERO, input a TARE signal (Pin 24) to re-ZERO the display.
2. Check if the Weighing Hopper is empty using the ZERO Band Output (Pin 13).
3. Input the Start signal via the Control I/O Interface connector (Pin 22). When the Start signal is received, then SP 1, SP 2, and Free Output signals will "come ON".

Note: When the Final Weight is 0 , the Pin 12, 11 and 10 are kept OFF.
4. Open the Supply Bin's: Full-Flow Gate, Medium-Flow Gate, and Dribble-Flow Gate.
5. When the display reaches "Final - SP 1", the

SP 1 Output (Pin 12) signal will come OFF. Closed the Full-Flow Gate by using the SP 1 Output OFF signal.
6. When the display reaches "Final - SP 2", the

SP 2 Output (Pin 11) signal will come OFF. Closed the Medium-Flow Gate by using the SP 2 Output OFF signal.
7. When the display reaches "Final - Free", the Free Output (Pin 10) signal will come OFF. Closed the

Dribble-Flow Gate by using the Free Output OFF signal.
8. Batch Finish signal is sent after the set time period (F103) or when the display is stable.
9. After Free Fall has stopped - check to see if the HI and LO (Pin 9, 8) signals are OFF. If both outputs are OFF then the batch is completed correctly.
10. Automatic Free Fall is now recalculated for the next event.
11.The Weighing Hopper Discharge Gate will be opened using the Finish Output (Pin 7) ON signal.
12.Data Output is sent (Auto print Mode: BCD, RS-232C, RS-422/485, Printer or Current Loop). The NET Weight data will be accumulated.
13. Ready for the next batching event.
14. If an Abort signal is sent (Pin 21) anytime after the Start signal is received, then:
(1) SP 1, SP 2 and Free signals will go OFF, and Gates will be closed.
(2) Batch Finish and Data Output signals will be sent.
(3) NET Weight data will be accumulated.

Built-in Automatic Program Mode: Loss-in-Weight Batching (F101=4)
SP1 - Supplying Bin Gate
SP2 - Full Flow Gate Free - Dribble Flow Gate Start signal - Pin22

1. The Weighing Hopper/ Supply Bin is empty .The display shows " 0 ", and all Gates are closed.
2. Open the Supplying Bin Gate.
3. When the GROSS Weight reaches "SP 1", the SP 1 Output (Pin 12) signal will come ON. Closed the Supplying Bin Gate by using the SP 1 Output ON signal.
4. The displayed weight will exceed the SP 1 value by the Free Fall value. This weight is not necessarily accurate - but accuracy is not needed at this moment since the purpose of this event is to fill up the Weighing Hopper. The SP 1 value is always compared to GROSS weight.
5. Input a TARE signal (Pin 24) to ZERO display.
6. Input the Start signal via the Control I/O interface connector (Pin 22). When the Start signal is received, the SP 2 and Free Outputs "come ON".
Note : When the Final Weight is 0, the Pin 11 and 10 are kept OFF .
7. Open the Full-Flow Gate and the Dribble-Flow Gate for Full-Flow filling into the Receiving Bin.
8. When the display reaches "Final - SP 2", the SP2 Output (Pin 11) signal will come OFF. Closed the Full-Flow Gate by using the SP2 Output OFF signal.
9. When the display reaches "Final - FREE", the FREE Output (Pin 10) signal will come OFF. Closed the Dribble-Flow Gate by using the FREE Output OFF signal.
10. Batch Finish signal is sent after the set time period (F103) or when the display is stable.
11. After Free Fall has stopped - check if the HI and LO ($\mathrm{Pin} 9,8$) signals are OFF. If both outputs are OFF then the batch is completed correctly.
12. Automatic Free Fall is now recalculated for the next event.
13. The Weighing Hopper Discharge Gate will be opened using the Finish Output (Pin 7) ON signal.
14. Data Output is sent (Auto print Mode: BCD, RS-232C, RS-422/485, Printer or Current Loop). The NET Weight data will be accumulated.
15. Signal (Pin 13) will refill using ZERO Band Output if needed. Ready for next batching event.
16. Ready for the next batching event.
17. If an Abort signal is sent (Pin 21) anytime after the Start signal is received, then:
(1) SP 1, SP 2 and Free signals will go OFF, and Gates will be closed.
(2) Batch Finish and Data Output signals will be sent.
(3) NET Weight data will be accumulated.

CHAPTER 6 OPTIONS

§ 6-1 I/O INTERFACE

(0) Controll/O

Input :

The width of these input pulse should at least 0.25 sec .

Output :

() INPUT Pins Description When F101 =1, 2.

| Pin | Name | Signal | Function |
| :---: | :---: | :---: | :--- | :--- |
| Pin25 | ZERO Input | pulse | BDE 2007 will zero according to F004 |
| Pin24 | TARE Input | pulse | BDE 2007 will return to zero and store tared weight. |
| Pin23 | TARE Reset | pulse | Clear Tared Weight |
| Pin21 | Auto Free Fall
 Compen -sation
 when batching | pulse | When P21 and COM 1 shortage, BDE 2007 will adjust compensation value for next
 batch. And accumulate Net Weight. |
| Pin18 | lear count and
 acculmulation. | pulse | Clear count and accumulation. |
| Pin17
 li6 | Input Common
 (COM1) | | |

© INPUT Pins Description When F101 =3, 4.

Pin	Name	Signal	Function
Pin25	ZERO	Pulse	BDE 2007 will zero according to F004
Pin24	TARE Input	Pulse	BDE 2007 will return to zero and store tared weight.
Pin23	TARE Reset	Pulse	Clear Tared Weight
Pin22	Batch/Loss in Weight Start batch (Pulse input)	Pulse	Start Batch
Pin21	$\begin{aligned} & \text { Batch/Loss in } \\ & \text { Weight Stop } \\ & \text { batch } \\ & \text { (Pulse Input). } \\ & \hline \end{aligned}$	pulse	Stop Batch and send finish signal, and accumulation.
Pin18	Clear count and accumulation.	pulse	Clear count and accumulation.
$\begin{array}{\|l} \hline \text { Pin17 } \\ -16 \end{array}$	$\underset{\substack{\text { Input } \\ \text { (COM1) }}}{ }$		

Pin	Name	F101	Description
Pin13	ZERO Band		Gross Weight \leqq ZERO Band
Pin12	SP1	1,3	Batch : Net Weight > = Final-SP1
		2,4	Loss in Weight : Gross Weight $>$ SP1
Pin11	SP2		Net Weight $>=$ Gross - SP2
Pin10	FF		Net Weight $>=$ Final -FF
Pin9	HI		Net Weight $>$ Final + Hi value
Pin8	LO		Net Weight < Final-Lo Value
Pin7	FINISH	3,4	Batch/ Loss-in Weight : Final Output -Finsh Signal
Pin6	Unstable / Error		F105=0: Stable: Open, Unstable : Short. F105=1: Error Output, ZERO exceed valid Range, Overload, or Printer Error.
Pin3, 4	Output 12V		Max. 0.5A
Pin1 - 2	COM2		

5 6-2 Serial interface OP-02

There are two kinds of OP-02 :
(1) High speed two way(Pin3,Pin4)
F200
(2)Low speed one way(Pin1)
FLOO

Specifications		
Type	EIA-RS-232C 12V	
Transmission	Half Duplex, Asynchronous Transmission	
Baud Rate	$1200 \cdot 2400, ~ 4800 \cdot 9600 \cdot 19200 \mathrm{BPS}$	
Bit	8 bit	7 bit
Parity	non- parity	Odd / even parity
Stop bit	1 bit	
Output Code	ASCII	

Specifications

Transmission	Half Duplex, Asynchronous Transmission

Baud Rate 1200, 2400, 4800, 9600, 19200BPS

Parity \quad non- parity \quad Odd / even parity
Output Code ASCII

* OP-02A (RS-232)

25 Pin assigments

	Pin	Assigment
	Pin 1	TxD2 (Transmit Data)
	Pin 2	SG (Signal Ground)
	Pin 3	RxD (Receive Data)
	Pin 4	TxD (Transmit Data)

* OP-02B (RS-485)

RS-485 Spec :		
Type	EIA-RS-485	
Transmission	Half Duplex, Asynchronous Transmission	
Baud Rate	2400BPS, 4800BPS, 9600BPS, 19200BPS, 38400BPS	
Bit	8 bit	7 bit
Parity	non- parity	Odd / even parity
Stop bit	1 bit	
Output Code	ASCII	

- Pins when connect PC :

Data format

F205 $=0$ (standard)
format1 (F002)
S T , N T , 0 0 5 4 3 2 \cdot

※ HEADER 2	
N	\rightarrow NET
G	\rightarrow GROSS
T	\rightarrow TARE

\uparrow Header $1 \uparrow$ Header2 \uparrow Data (8 digits in length)

※ HEADER 1			
0	L	\rightarrow Over Max. Capacity or under	
S	T	\rightarrow STABLE	
U	S	\rightarrow UNSTABLE	
ASCII data characters			
" 0 " ${ }^{\text {a }}$ " 9 "			
" " Space (20H)			
" . " Decimal Point (2EH)			
" - " Minus (2DH)			
" ${ }^{-}$+ ${ }^{-} \quad$ Minus (2DH)			

※Command List Table

Sending Command to BDE-2007	BDE-2007 response
R01 Cr Lf \langle READ \rangle	Sending latest data once (Data format depends on F202)
K01 Cr Lf \langle ZERO \rangle	BDE-2007 display will ZERO. Z Cr Lf will be sent by BDE-2007.
K02 Cr Lf \langle TARE \rangle	BDE-2007 will go to NET Mode and display will TARE. T Cr Lf will be sent by BDE-2007.
K04 Cr Lf	BDE-2007 will go to NET Mode. N Cr Lf will be sent by BDE-2007.
\langle NET \rangle	BDE-2007 will go to GROSS Mode. G Cr Lf will be sent by BDE-2007.
K03 Cr Lf \langle GROSS \rangle	

Sending Command to BDE-2007	BDE-2007 response
C01 Cr Lf $<$ BEGIN BATCHING $>$	Send back signal "BB". "BB" can only be received in the Built in Automatic Program Control Mode. (Only F101=2,3)
C02 Cr Lf $<$ HALT BATCHING $>$	Send back signal "HB". "HB" an only be received in the Built in Automatic Program Control Mode (Only F101=2,3)
R04 Cr Lf $<$ READS FINAL NET $>$	Sending Final NET weight. If B Cr Lf is send by BDE-2007, that means batching is still in process. (Only F101=2,3)
W02: Data Cr Lf $<$ SETPOINT $>$	Signal "S Cr Lf" will send back by BDE-2007. BDE-2007 will send back SET POINT CODE until totally receive SET POINT CODE data.

R03 Cr Lf $<$ READ SETPOINT $>$	SS XX Cr Lf will send back by BDE-2007. BDE-2007 will send back SET POINT values until totally receive SET POINT values.
W01: Data Cr Lf $<$ SET ACCESSORIES $>$	BDE-2007 will send back signal "SA Cr Lf". BDE-2007 will send back ZERO band data until totally receive Zero Band Value.
R02 Cr Lf $<$ READ ACCESSORIES $>$	BDE-2007 receives signal "RS Cr Lf".

※ Error message

BDE 2007 Error number	BDE 2007 Error message
E01	The format of command is not correct.
E02	The data of command is not correct.
E03	Data not Accept.
E04	Can not execute.
E05	Indicator is busy.

※If an invalid character is received ? Cr Lf will be sent by the BDE-2007
※If the commands are not accepted for any reason: I Cr Lf will be sent by the BDE-2007
※Batch 1234 S Cr Lf

6	5	4	3	2	1	4	5	6	7	8	9	0	2	3		4	5	6	6
4 Fin	1						4 SP												

1	2	3	4	1	2	3	3	4	1	2		3	4	Cr	Lf	
4Fr			4 Hi			4 Lo										

※SA Cr Lf format

0	0	3	4	5	6	Cr	Lf

Zero Range
※Please setup F204 first and give command @XX ($X X=F 204$)
Ex: @XX R Cr Lf @XX T Cr Lf

* OP-05 Set at Analog 4 ~ 20mA

Range	$4 \sim 20 \mathrm{~mA}$ (Possible: $2 \sim 22 \mathrm{~mA}$)
Resolution	Min. $1 / 3000$
Temp. coefficient	$\pm\left(0.015 \% /{ }^{\circ} \mathrm{Cof} \mathrm{rdg}+\right.$
Max. resistance load	$\operatorname{Max.500\Omega }$

Pin1 Pin2 Pin3 Pin4 Pin5

-If you add a 250Ω resistor, the output will be 1 V to $5 \mathrm{~V}(4 \sim 20 \mathrm{~mA})$

(i) This resistor must be large enough for proper power consumption.

Use the following formula: $\mathrm{W}=\mathrm{I}^{2} \times \mathrm{R}$
where
W: Power I: Output Current
R: Resistor
If a 500Ω resistor is used, power consumption will be :
$\mathrm{W}=(0.02)^{2} \times 500=0.2$ when the Output Current is set to 0.2 mA
The resistor should have a power greater than " $0.5 \mathrm{~s}(\mathrm{w}=0.5)$ and have a very low temperature coefficient. In this example power consumption is " 0.2 " and thus, the 500Ω resistor is adequate.

-Setting Output Current

IOUT $=\mathrm{IZ}+($ weight $/$ capacity $) *(\mathrm{IM}-\mathrm{IZ}) \quad$ (if $2<=$ IOUT $<=22 \mathrm{~mA})$
IOUT: Output Current IZ: Output at ZERO (F501) IM: Output at Maximum Capacity (F502)
Example: A weighing system has a Maximum Capacity of $10,000 \mathrm{~kg}$.
If you need the Output current to be 4 mA at ZERO display, and 20 mA at $1 / 2$
Maximum Capacity then:
IM $=$ capacity $/$ simulated $) \times($ IOUT -IZ$)+\mathrm{IZ}$
$\mathrm{IM}=10000 / 5000 \times(20 \mathrm{~mA}-4 \mathrm{~mA})+4 \mathrm{~mA}=36 \mathrm{~mA}$
When Output at Full Scale is set at 36 mA , and Output Current at Display ZERO is set at 4 mA , then at $1 / 2$ Capacity $(5000 \mathrm{~kg}$) the Output Current will be 20 mA .
※ NOTE: The Maximum Output will be saturated at 24 mA .

If you set at $0-10 \mathrm{~V}$, Please also connect $\mathrm{V}+\mathrm{V}$ - as follows. 。
-If you add a $10 \mathrm{~K} \Omega$ resistor, the output will be 0 mA to $1 \mathrm{~mA}(0 \sim 10 \mathrm{~V})$
(i) This resistor must be large enough for proper power consumption.

Use the following formula: $\quad W=V^{2} / \mathrm{R}$
where
W: Power V: Output Voltage R: Resistor

- Setting Output Voltage

VOUT $=\mathrm{VZ}+($ weight $/$ capacity $) *(\mathrm{VM}-\mathrm{VZ}) \quad($ if $0<=$ VOUT $<=10 \mathrm{~V})$
VOUT: Output Voltage
VZ: Output at ZERO (F503)
VM: Output at Maximum Capacity (F504)
NOTE: The Maximum Output will be saturated at 10 (V).

Range	$0 \sim+10 \mathrm{~V},($ Possible: -1.25 $11.25 \mathrm{~V})$			
Resolution	Min. $1 / 3000$			
Temp.	$\pm\left(0.015 \% /{ }^{\circ} \mathrm{C}\right.$ of $\mathrm{rdg}+$			
coefficient	$0.01 \mathrm{~mA}) /{ }^{\circ} \mathrm{C}$	$	$	Min. $5 \mathrm{~K} \Omega$
:---				
Max.				
resistance				
load				

§ 6-4 RELAY CONTROL INTERFACE OP-08
**This option is to connecting BDE 2007 OP-01 Control I/0, which enable OP-01 to RELAY OUTPUT.

Specifications:

Power : Standard : DC12 from Outside.

Pin assignment :

Accessory :

(1) 25PIN Male to Female Wire 1.8 Meter.

(A) RELAY TYPE

Input (IN)
Number of Pins : 8.
Input Common Pin: COM1
Output (OUT):
Number of Pins : 8.
Type : for RELAY.
Max. Load: 250VAC, 30VDC, 3A
Output Common Pin : COM2
RELAY durance : About 100,000 Times.
LED light will ON when work.

(B) SSR TYPE

Input (IN)
Number of Pins : 8.
Input Common Pin: COM1
Output (OUT):
Number of Pins: 8.
Type : for RELAY.
Max. Load: 24~280VAC, 3A (Only for AC)

CONTROL I/O Pins		
$\begin{gathered} \text { OP-08 } \\ \text { I/O } \end{gathered}$		BDE-2007
		Control I/O
Input	1	PIN 25
	2	PIN 24
	3	PIN 23
	4	PIN 22
	5	PIN 21
	6	PIN 20
	7	PIN 19
	8	PIN 18
Output	1	PIN 13
	2	PIN 12
	3	PIN 11
	4	PIN 10
	5	PIN 9
	6	PIN 8
	7	PIN 7
	8	PIN 6

Output Common Pin : COM2
RELAY durance : About 100,000 Times.
LED light will ON when work.

Data Register					
R/W	Type	Function	Address	Modbus address	Description
R	Word	R:04	$0000 \sim 0001$		Same as display
R	Word	R:04	$0002 \sim 0003$	$30003 \sim 30004$	G.W.
R	Word	R:04	$0004 \sim 0005$	$30005 \sim 30006$	N.W.
R	Word	R:04	$0006 \sim 0007$	$30007 \sim 30008$	Tare Value
R	Word	R:04	$0008 \sim 0009$	$30009 \sim 30010$	Accumulation
R	Word	R:04	$0010 \sim 0011$	$30011 \sim 30012$	Total Count
R	Word	R:04	$0012 \sim 0013$	$30013 \sim 30014$	Actual Final
R/W	Word	R:03,W:06	$0000 \sim 0001$	$40001 \sim 40002$	Final
R/W	Word	R:03,W:06	$0002 \sim 0003$	$40003 \sim 40004$	SP1
R/W	Word	R:03,W:06	$0004 \sim 0005$	$40005 \sim 40006$	SP2
R/W	Word	R:03,W:06	$0006 \sim 0007$	$40007 \sim 40008$	FF
R/W	Word	R:03,W:06	$0008 \sim 0009$	$40009 \sim 40010$	HI
R/W	Word	R:03,W:06	$0010 \sim 0011$	$40011 \sim 40012$	LO

Bit I/O					
R/W	Type	Function	Address	Modbus address	SCALE Output
R	Bit	R:02	$\mathbf{0 0 0 0}$	$\mathbf{1 0 0 0 1}$	ZERO
R	Bit	R:02	$\mathbf{0 0 0 1}$	$\mathbf{1 0 0 0 2}$	M.D.
R	Bit	R:02	$\mathbf{0 0 0 2}$	$\mathbf{1 0 0 0 3}$	G.W.
R	Bit	R:02	$\mathbf{0 0 0 3}$	$\mathbf{1 0 0 0 4}$	N.W.
R	Bit	R:02	$\mathbf{0 0 0 4}$	$\mathbf{1 0 0 0 5}$	Tared
R	Bit	R:02	$\mathbf{0 0 0 5}$	$\mathbf{1 0 0 0 6}$	OVER
R	Bit	R:02	$\mathbf{0 0 3 0}$	$\mathbf{1 0 0 4 9}$	Range
R	Bit	R:02	$\mathbf{0 0 3 1}$	$\mathbf{1 0 0 5 0}$	SP1
R	Bit	R:02	$\mathbf{0 0 3 2}$	$\mathbf{1 0 0 5 1}$	SP2
R	Bit	R:02	$\mathbf{0 0 3 3}$	$\mathbf{1 0 0 5 2}$	FF
R	Bit	R:02	$\mathbf{0 0 3 4}$	$\mathbf{1 0 0 5 3}$	HI
R	Bit	R:02	$\mathbf{0 0 3 5}$	$\mathbf{1 0 0 5 4}$	LO
R	Bit	R:02	$\mathbf{0 0 3 6}$	$\mathbf{1 0 0 5 5}$	Finish
R	Bit	R:02	$\mathbf{0 0 3 7}$	$\mathbf{1 0 0 5 6}$	Unstable
/ Error					

Bit I/O					
R/W	Type	Function	Address	Modbus Address	SCALE Intput
R/W	Bit	R:01,W:05	$\mathbf{0 0 0 0}$	$\mathbf{0 0 0 0 1}$	ZERO
R/W	Bit	R:01,W:05	$\mathbf{0 0 0 1}$	$\mathbf{0 0 0 0 2}$	TARE
R/W	Bit	R:01,W:05	$\mathbf{0 0 0 2}$	$\mathbf{0 0 0 0 3}$	TARE Cleared
R/W	Bit	R:01,W:05	$\mathbf{0 0 0 3}$	$\mathbf{0 0 0 0 4}$	Display G.W.
R/W	Bit	R:01,W:05	$\mathbf{0 0 0 4}$	$\mathbf{0 0 0 0 5}$	Display N.W.
R/W	Bit	R:01,W:05	$\mathbf{0 0 3 0}$	$\mathbf{0 0 0 4 9}$	Add 1
R/W	Bit	R:01,W:05	$\mathbf{0 0 3 1}$	$\mathbf{0 0 0 5 0}$	Clear ACC and Count
R/W	Bit	R:01,W:05	$\mathbf{0 0 3 2}$	$\mathbf{0 0 0 5 1}$	Start Batch
R/W	Bit	R:01,W:05	$\mathbf{0 0 3 3}$	$\mathbf{0 0 0 5 2}$	Stop Batch

※BDE-2007 MODBUS SAMPLE CODE ※Error Code :

EX: Read as display: 01040000000271 CB
EX : Read as N.W. : 010400020002 D0 0B
EX : Read Final weight: 010300000002 C 4 0B
EX: Read SP1weight: 01 030002000265 CB
EX : Write 5000 to Final weight :
01060000138884 9C
EX : Write 300 to SP1 Value :
01060002 0B B8 2F 48
EX: Read ZERO status : 010200000001 B9 CA
EX : Read ZERO Range : 010200300001 B9 C5
EX : Write ZERO to BDE 2007 :
01050000 FF 00 8C 3A

Appendix 2

【Screen characters】

Contents

CHAPTER 1 INTRODUCTION
1-1 Items in Carton 1
CHAPTER 2 INSTALLATION
2-1 Best Conditions for Use 1
2-2 Connecting the Load Cell 1
2-3 Front and Rear Panel Dimensions 2
CHAPTER 3 SPECIFICATIONS
3-1 Analog Input and A/D Conversion 3
3-2 General 3
3-3 Rear Panel 3
CHAPTER 4 SYSTEM FUNCTIONS
4-1 System Check 5
4-2 Functions 5
4-3 Calibration 9
4-4 System Initialize 10
4-5 Accumulation 10
CHAPTER 5 SET POINTS
5-1 Set Points 10
5-2 Batching Modes 11
CHAPTER 6 OPTIONS
6-1 I/O Interface 15
6-2 Serial Interface 16
6-3 Analog Output 19
6-4 Relay control interface OP-08 20
6-5 Modbus 22

플․․․․ Benediction Enterprise Co., Ltd, Taiwan

20090602 VER.

BOE 2007 Weighing nndicator S controller User's Manual

